Search Site

Advanced Search



Media Contest

Contest Instructions

Register for Contest

Problems and Results

Download Certificates

Articles, Resources & Links

Contest Stories

Frequently Asked Questions

Advisor Login

Forgotten Password

Contact Us

View Cart

MCM: The Mathematical Contest in Modeling
ICM: The Interdisciplinary Contest in Modeling

2002 Mathematical Contest in Modeling
The Problems

Problem A
Authors: Tjalling Ypma
Title: Wind and Waterspray

An ornamental fountain in a large open plaza surrounded by buildings squirts water high into the air. On gusty days, the wind blows spray from the fountain onto passersby. The water-flow from the fountain is controlled by a mechanism linked to an anemometer (which measures wind speed and direction) located on top of an adjacent building. The objective of this control is to provide passersby with an acceptable balance between an attractive spectacle and a soaking: The harder the wind blows, the lower the water volume and height to which the water is squirted, hence the less spray falls outside the pool area.

Your task is to devise an algorithm which uses data provided by the anemometer to adjust the water-flow from the fountain as the wind conditions change.


Problem B
Authors: Bill Fox and Rich West
Title: Airline Overbooking

You're all packed and ready to go on a trip to visit your best friend in New York City. After you check in at the ticket counter, the airline clerk announces that your flight has been overbooked. Passengers need to check in immediately to determine if they still have a seat.

Historically, airlines know that only a certain percentage of passengers who have made reservations on a particular flight will actually take that flight. Consequently, most airlines overbook-that is, they take more reservations than the capacity of the aircraft. Occasionally, more passengers will want to take a flight than the capacity of the plane leading to one or more passengers being bumped and thus unable to take the flight for which they had reservations.

Airlines deal with bumped passengers in various ways. Some are given nothing, some are booked on later flights on other airlines, and some are given some kind of cash or airline ticket incentive.

Consider the overbooking issue in light of the current situation:
Less flights by airlines from point A to point B
Heightened security at and around airports
Passengers' fear
Loss of billions of dollars in revenue by airlines to date

Build a mathematical model that examines the effects that different overbooking schemes have on the revenue received by an airline company in order to find an optimal overbooking strategy, i.e., the number of people by which an airline should overbook a particular flight so that the company's revenue is maximized. Insure that your model reflects the issues above, and consider alternatives for handling "bumped" passengers. Additionally, write a short memorandum to the airline's CEO summarizing your findings and analysis.