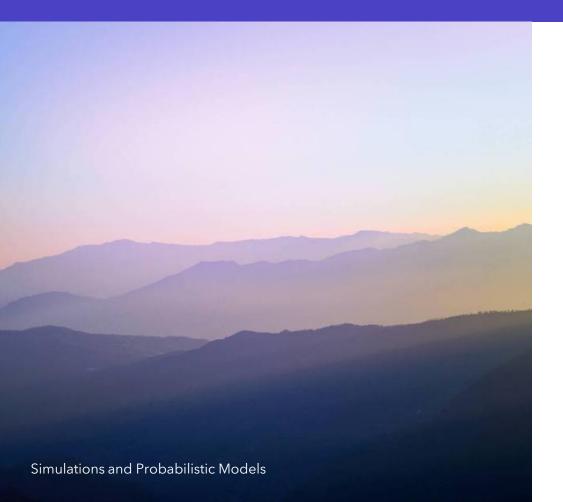
Simulations & Probabilistic Models

William Farmer
William.farmer@culver.org
Culver Academies



Purpose

- Simulations in Excel
- Assignments and Student Examples
- Extension Topics
- Creating Data from Probabilistic Models

Agenda

Purpose

Build a simulation

Model a probability (random) event

Improve Excel skills

Build a Simulation

From Deterministic Models to Probabilistic Models

Actual Class Assign ment

Flipping a Coin

- Using EXCEL
- Simulate flipping a fair coin 10 times
- Record each result (head or tail)
- Color code your results
- Build a summary table of your results (number and percentage of each outcome

Countif function in Excel

						CEI
Flip#	Random Nu	ımber	Head or Tail			
1	0.4104	7348	Tail			
2	0.94528	37973	Head			/
3	0.11657	78973	Tail			
4	0.4986	66087	Tail	Numb	er Head	5
5	0.86152	29341	Hgad	Numb	er Tail	5
6	0.75817	73361	Head			
7	0.44241	L390A	Tail			
8	0.61805	50909	Head			
9	0.50858	7169	Head 🔥			
10	0.25848	36568	Tail /			

Answer

IF() function in Excel

Conditional Formatting in Excel

Flipping a Coin Part 2

- Keeping everything from the first part of flipping a coin
- Change it for an unfair coin (70% chance of a head)
- Increase the number of flips to 1000
- Run 10 trials with recording your results from each trial of 1000 flips
- Build a summary output for your 10000 flips

Locking a cell & referencing that cell throughout the worksheet

						Head	6991	0.6991	
)					Tail	3009	0.3009	
Table of results			Table of results				Table of results		
	Number	%age		Number	%age			Number	%age
Head	716	72%	Head	714	71%		Head	707	71%
Tail	284	28%	Tail	286	29%		Tail	293	29%
	Trial 1			Trial 2				Trial 3	
Flip#	Rand #	Outcome	Flip#	Rand #	Outcome		Flip#	Rand #	Outcome
1	0.787168	Head	1	0.999102	Head		1	0.26129	Tail
2	0.504593	Head	2	0.48566	Head		2	0.439738	Head
3	0.499249	Head	3	0.255382	Tail		3	0.945737	Head
4	0.43283	Head	4	0.496566	Head		4	0.235155	Tail
5	0.628816	Head	5	0.599471	Head		5	0.05768	Tail
6	0.931964	Head	6	0.46501	Head		6	0.069608	Tail
7	0.16066	Tail	7	0.475654	Head		7	0.975265	Head
8	0.483285	Head	8	0.565425	Head		8	0.952123	Head

Overall Results

Building Knowledge

Simulations and Probabilistic Models

Prob of He

Roulette

 You start with 100 Culver Bucks

https://www.youtube.com/watch?v=bNqs17-clm4

- Pick a strategy to play Roulette
- Calculate your expected results
- Simulate the results for playing 1000 times
- Compare your results with your expected results

Home Work

0.47368421	0.061883	Lose	100	Expected results:
				·
prob of winning on red or	0.60088	Lose	98	Chance of winning: 9/19
black	0.669018	Lose	96	Chance of losing: 10/19
	0.380833	Win	94	In 19 trials, one will lose two dollars
	0.759043	Lose	96	E(x)= (2/19)*100
	0.261197	Win	94	E(x)= 10.5263158 dollars lost
	0.941961	Lose	96	
	0.581181	Lose	94	Percent error:
	0.02528	Win	92	100*(50-(-10.5263158))/(50) = 121% error
	0.756285	Lose	94	
	0.600409	Lose	92	
	0.984657	Lose	90	
	0.814087	Lose	88	
	0.176518	Win	86	
	0.465654	Win	88	

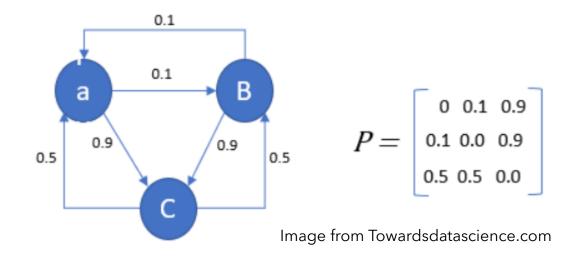
Student Examples

Output#	Bet on	Yes/No	Remain Money#	Validity	Winning chance	Loosing chance	
20	0	No	99		1/38	37/38	
14	0	No	98				
33	0	No	97		expected result	100-1000/38*2:	47.3684
10	0	No	96		actual result	136	
16	0	No	95		Percent error	1.871111175	
18	0	No	94				
8	0	No	93				
17	0	No	92				
21	0	No	91				
4	0	No	90				
19	0	No	89				
10	0	No	88				
15	0	No	87				
5	0	No	86				
3	0	No	85				
0	0	Yes	121				
9	0	No	120				
0	0	Yes	156				

1000 Trials of Roulette			Rule: First co				
			Expected wi	789%			
Trial #	Rand #	Outcome					
1	0.57320314	lose		Table of Results			
2	0.02782296	win			Number	%age	
3	0.52655285	lose		win	312	31%	
4	0.48654784	lose		lose	688	69%	
5	0.28993015	win					
6	0.15164657	win		Calculated w	inning possibi	lity:	31%
7	0.52723597	lose		Difference (E	xpected-Calcu	ulated) =	0.378900%
8	0.4192702	lose					
9	0.62819612	lose					
10	0.77217815	lose					
11	0.81065493	lose					

Student Examples

Expected probability of winning should be 18/38, which is around 47%. This means that in 1000 games, there will be 470 wins and 530 loses. Supposing wins and loses happens alternatively, the maximum rounds the person can play is 950 rounds. However, the simulation shows that only using this strategy, the player is only able to play 98 rounds. The code automatically stops when it first hits zero.

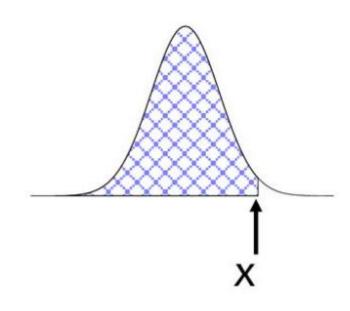

```
simulation ros.py X
C: > Users > mikey > Desktop > Honor in Math > advance math > ♦ simulation ros.py > .
       # always use bet 10 bucks on 1-18
        import random
       money = 100
       for i in range (0, 1000):
            result = random.randint(1, 38)
           if money == 0:
               break
           if result < 19:
                money += 10
            else:
               money -= 10
 13
           print("Round ",i+1, ": " ,end=" ")
           print(money)
       print("the final round played is", i)
                                   TERMINAL
```

Extension Topics

Probability or Decision Tree

Prob: 0.18 95°F Rank: 2 Prob: 0.396 Rank: 1 0.55 0.15 Prob: 0.108 75°F Rank: 3 0.05 0.72 Prob: 0.036 65°F Rank: 7 weather Prob: 0.014 Rank: 8 0.05 Prob: 0.07 0.25 85°F Rank: 6 0.35 0.35 Prob: 0.098 75°F Image from datakwery.com Rank: 4 Prob: 0.098 65°F Rank: 4

Markov Chain or Probability Transition Matrix



Linking with Binomial Distribution

Additional content

Using Random Number Generators to create data

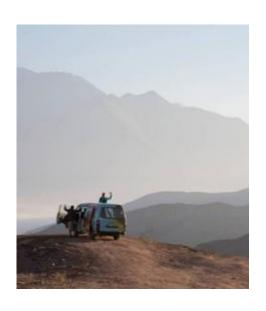
- Given a NORMAL distribution, the total area under the curve is 1.
- Use Rand() in Excel to represent the area under the curve

- Use Norm.Inv in Excel
- Inputs are Probability or area, Mean, and Standard Deviation

12

Summary

Simulations in Excel


Assignments and Student Examples

Extension Topics

Creating Data from Probabilistic Models

Lou Holtz

William Farmer

William.farmer @culver.org

Culver Academies

Thank you

15